
Sniper's Paradise!

How to make a seamless tiling texture

What are seams?

Tiling textures are much more efficient than unique textures, which is especially important
for large objects. The main cost of this efficiency is that tiling textures can look unrealistic
when used incorrectly -- real rocks are not made of repeating tiles. The tiling is most obvious
when there are distinct details that repeat, and the worst kind of distinct detail is an edge
seam -- a sharp discontinuity between the tiles. Here is an example of a tiling rock texture
with seams (highlighted on the left, but still present on the right).

How do we remove seams?

First, let's get our initial texture (with seams). For photosourced textures, let's start by
getting a photo from CGTextures.com, and cutting out a square. Pick an area that looks fairly
uniform.

Paste that into a new file, and then use the 'offset' filter to expose the seams. The offset
filter lets you shift the image over in a way that 'wraps around', so that the pixels that go off
the right edge show up on the left.



Now that we've offset the image by half its size in each direction, the seam shows up as a
cross through the middle of the image. Now pick a soft brush, and paint out the seams using
the clone (rubber stamp) tool. The rubber stamp tool lets you paint pixels from one part of
the image onto another part.

Here is the texture after painting out the seams.

That's really all there is to basic seam removal. Here is the final seamless tiling material in
the engine:



This could still use a lot of work though. Even without seams, the tiling is obvious because of
the features and colors in the texture. For example, there is one dark shadow underneath a
rock which is obviously repeated over and over -- if we end up using this particular texture in
the game I will have to fix that! When making tiling textures, we have to walk a fine line
between making it tile invisibly, and making it visually interesting.

How do we test tiling textures in the Phoenix engine?

There are a few more details you'll have to know to make tiling texture blocks like this in
Phoenix (in the Overgrowth alphas). First you will need to add a normal map and specular map
to take full advantage of the lighting system. If you want, you can just use the default
'diffusebump.tga' texture and skip making a normal map, but I'll explain how to use normal
maps for anyone who is interested. You can make a decent normal map from a color map very
easily using CrazyBump. If you don't have CrazyBump there is a free Nvidia plugin that works
in Photoshop.

You will also probably want a specular map (showing how shiny the texture is, from black
[matte] to white [chrome]). If you don't want your texture to be shiny at all, leave the alpha
channel black. To make my specular map I just grabbed the one calculated by CrazyBump, but
you can also just use a darker desaturated version of your color map. Here are the color,
normal and specular maps for this texture.

To use fewer textures, Phoenix uses the alpha channel of the color map to store the specular



map. To do this, you have to make sure your color map has an alpha channel, and then copy
your specular map into it. Here is the 'channels' panel for the color map in photoshop, with
the specular in the alpha channel.

Now you can export both the color/specular map and normal map as .tga files, and create the
.xml object file to load them in the game. The easiest way to make this file is to copy an
existing block object .xml file and just edit the paths to the textures. Here I copied
"blackCatRoad.xml" file and edited the 
and paths to point to my GrayRock images:

Now I can just load my block in the engine and make walls or floors or whatever I want! My
first attempt came out too bright because the specular map was not dark enough -- a bright
color map with a bright specular map will just get washed out like this.

I fixed it by just darkening the maps a bit.

Although it seems like a lot of steps, adding materials to the engine is really not too hard. 

Spam Killer

Back To Top

2005 Sniper's Paradise 
All logos and trademarks are properties of their respective owners. 

Unreal™ is a registered trademark of Epic Games Inc. 
Privacy Policy 

Website by Softly 
Powered by RUSH

http://english-81414008967.spampoison.com/
http://www.snipersparadise.net/spambot/spambot1.html
http://www.epicgames.com/
http://www.snipersparadise.net/privacy.html

	snipersparadise.net
	Sniper's Paradises


