
solosnake .com

A simple ASE file of a square polygon

NOTE : Since initially writing this page I have done a lot more
work with the ASE file format. I have written a yacc/lex based
parser that reads ASE files into a set of C++ objects, and have
also made public the Unreal ASE Converter. You can find some
details of the ASE parser here.

- solosnake, 2nd March 2005

Please note that this is not an autorised or definitive analysis of the ASE file format. Instead I
have addressed only the contents absalutely neccessary for creating and rendering real time 3D
scenes, with referance to the DXA file format. Below is a complete ascii scene exporter output
for a simple square polygon: the data extracted for the DXA file I have highlighted. The format
is very self explanatory.

*3DSMAX_ASCIIEXPORT 200
*COMMENT "AsciiExport Version 2.00 - Mon Feb 12 17:49:55 2001"
*SCENE {

*SCENE_FILENAME "testplane.max"
*SCENE_FIRSTFRAME 0
*SCENE_LASTFRAME 100
*SCENE_FRAMESPEED 30
*SCENE_TICKSPERFRAME 160
*SCENE_BACKGROUND_STATIC 0.0000 0.0000 0.0000
*SCENE_AMBIENT_STATIC 0.0431 0.0431 0.0431
}

*MATERIAL_LIST {

*MATERIAL_COUNT 1
*MATERIAL 0 {

*MATERIAL_NAME "Material #1"
*MATERIAL_CLASS "Standard"
*MATERIAL_AMBIENT 0.1791 0.0654 0.0654
*MATERIAL_DIFFUSE 0.5373 0.1961 0.1961
*MATERIAL_SPECULAR 0.9000 0.9000 0.9000
*MATERIAL_SHINE 0.2500
*MATERIAL_SHINESTRENGTH 0.0500
*MATERIAL_TRANSPARENCY 0.0000
*MATERIAL_WIRESIZE 1.0000
*MATERIAL_SHADING Blinn
*MATERIAL_XP_FALLOFF 0.0000
*MATERIAL_SELFILLUM 0.0000
*MATERIAL_FALLOFF In
*MATERIAL_XP_TYPE Filter
*MAP_DIFFUSE {

*MAP_NAME "Map #1"
*MAP_CLASS "Bitmap"
*MAP_SUBNO 1
*MAP_AMOUNT 1.0000
*BITMAP "C:\Textures\MyTexture.bmp"
*MAP_TYPE Screen
*UVW_U_OFFSET 0.9000
*UVW_V_OFFSET 1.0300
*UVW_U_TILING 1.0000
*UVW_V_TILING 1.0000
*UVW_ANGLE 0.0000
*UVW_BLUR 1.0000
*UVW_BLUR_OFFSET 0.0000
*UVW_NOUSE_AMT 1.0000
*UVW_NOISE_SIZE 1.0000
*UVW_NOISE_LEVEL 1
*UVW_NOISE_PHASE 0.0000

http://www.solosnake.com/main/app/asetot3d.htm
http://www.solosnake.com/main/aseparser.htm

*BITMAP_FILTER Pyramidal
}

}

}

*GEOMOBJECT {

*NODE_NAME "Box01"
*NODE_TM {

*NODE_NAME "Box01"
*INHERIT_POS 0 0 0
*INHERIT_ROT 0 0 0
*INHERIT_SCL 0 0 0
*TM_ROW0 1.0000 0.0000 0.0000
*TM_ROW1 0.0000 1.0000 0.0000
*TM_ROW2 0.0000 0.0000 1.0000
*TM_ROW3 0.0000 -35.1807 0.0000
*TM_POS 0.0000 -35.1807 0.0000
*TM_ROTAXIS 0.0000 0.0000 0.0000
*TM_ROTANGLE 0.0000
*TM_SCALE 1.0000 1.0000 1.0000
*TM_SCALEAXIS 0.0000 0.0000 0.0000
*TM_SCALEAXISANG 0.0000
}

*MESH {

*TIMEVALUE 0
*MESH_NUMVERTEX 4
*MESH_NUMFACES 2
*MESH_VERTEX_LIST {

*MESH_VERTEX 0 -19.6285 -52.9010 -16.4621
*MESH_VERTEX 1 15.8121 -52.9010 -16.4621
*MESH_VERTEX 2 -19.6285 -52.9010 18.9785
*MESH_VERTEX 3 15.8121 -52.9010 18.9785
}

*MESH_FACE_LIST {

*MESH_FACE 0: A: 0 B: 1 C: 3 AB: 1 BC: 1 CA: 0 *MESH_SMOOTHING
4 *MESH_MTLID 4
*MESH_FACE 1: A: 3 B: 2 C: 0 AB: 1 BC: 1 CA: 0 *MESH_SMOOTHING
4 *MESH_MTLID 4
}

*MESH_NUMTVERTEX 12
*MESH_TVERTLIST {

*MESH_TVERT 0 0.0000 0.0000 0.0000
*MESH_TVERT 1 1.0000 0.0000 0.0000
*MESH_TVERT 2 0.0000 1.0000 0.0000
*MESH_TVERT 3 1.0000 1.0000 0.0000
*MESH_TVERT 4 0.0000 0.0000 0.0000
*MESH_TVERT 5 1.0000 0.0000 0.0000
*MESH_TVERT 6 0.0000 1.0000 0.0000
*MESH_TVERT 7 1.0000 1.0000 0.0000
*MESH_TVERT 8 0.0000 0.0000 0.0000
*MESH_TVERT 9 1.0000 0.0000 0.0000
*MESH_TVERT 10 0.0000 1.0000 0.0000
*MESH_TVERT 11 1.0000 1.0000 0.0000
}

*MESH_NUMTVFACES 2
*MESH_TFACELIST {

*MESH_TFACE 0 4 5 7
*MESH_TFACE 1 7 6 4
}

*MESH_NORMALS {
*MESH_FACENORMAL 0 0.0000 -1.0000 0.0000

*MESH_VERTEXNORMAL 0 0.0000 -1.0000 0.0000
*MESH_VERTEXNORMAL 1 0.0000 -1.0000 0.0000
*MESH_VERTEXNORMAL 3 0.0000 -1.0000 0.0000
*MESH_FACENORMAL 1 0.0000 -1.0000 0.0000
*MESH_VERTEXNORMAL 3 0.0000 -1.0000 0.0000
*MESH_VERTEXNORMAL 2 0.0000 -1.0000 0.0000
*MESH_VERTEXNORMAL 0 0.0000 -1.0000 0.0000
}

}

*PROP_MOTIONBLUR 0
*PROP_CASTSHADOW 1
*PROP_RECVSHADOW 1
*MATERIAL_REF 0
}

 SCENE_AMBIENT_STATIC is the marker for the value of the scenes ambient
lighting level, expressed as RGB floats. This is analogous to DirectX's
D3DRENDERSTATE_AMBIENT setting. The ambient light is by how much every object
in the scene is lit by default.

MATERIAL_COUNT is followed by an integer, the number of materials in the
scene: note that if there are NO materials this marker is still present, but
followed by a zero. In my example I have used only a single material. Each
new material will be marked by *MATERIAL at its start.

MATERIAL_AMBIENT and MATERIAL_DIFFUSE are float RGB values which represent
what color the material is and how it interacts with lighting. The ambient
and diffuse values are used in determining the materials apparant colour in a
scene. The resulting colour is calculated using the vertex normal data (per
vertex in DirectX) and the scenes ambient light against the materials ambient
light, and any diffuse lights against the materials diffuse value. In general
these values should be the same except for special effects.

MATERIAL_SPECULAR This is a float RGB colour value which represent what
colour the material reflects or highlights. This value ties in with the
dvPower member of a D3DMATERIAL7. When converting from ASE files which do not
have a POWER value DXAtoASE sets the default dvPower to zero.

BITMAP This is the path and name of the bitmap used to texture the object in
the ASE file. Note that DXA files do not copy the path data but instead only
extract the actual texture filename to use. If a material does not contain a
texture, then a DXA file mesh object will have a texture of NOTEXTURE.

UVW_U_OFFSET and UVW_V_OFFSET The values represent the offset of the texture
on the on the triangle to be textured. ASE files and DirectX agree on the
meaning of the U value, using it to offset the texture in the conventional
'x' direction, to the right as looked at, however they disagree on the V
value. In DirectX displacement by V moves a texture DOWN whereas in ASE files
V represents displacemetn up. DXAtoASE compensates for this and maps
correctly. Below is illustrated the diference in both sets:

DirectX
texture

co-ordinates

ASE
texture

co-ordinates

 UVW_U_TILING and UVW_V_TILING These values represent how many times the
triangle face is to be textured using the texture. Think of the texture as a
tile. A UVW_U_TILING value of 1.0 simply means you want one tile to cover the
whole polygon face (think of a rectangular polygon and a rectanguler texture).
For values greater then 1.0 the texture is applied that many times, so a
value of 2.5 means that your texture will appear on the polygon face 2.5
times. The values can also be less then 1.0, eg 0.5 which will stretch half
the texture across the entire face of the rectangle. The U and V specify
tiling in the directions indicated in the graphics above. DirectX and 3ds max
and so ASE files differ in their understanding of U and V tiling. In 3ds max,
textures are always centred and tiled from the ends away from the centre, so
a U value of 2.0 results in a texture appearing once centred and having one
half on either side. in DirectX, a U tiling of 2.0 will result in the texture
being simply repeated twice across the face. Both effects can be simulated in
the other environment (or corrected) using the U and V offsets. Again, DXA
will correct the discrepancy between ASE and DirectX. Note also that although
both DirectX and 3ds max allow specification of other forms of tiling, eg
mirroring, this does not seem to be output to the ASE file, and so there is
no way to tell in an ASE file what type of texture wrapping to use.

GEOMOBJECT This marks the beginning of a new geometric object. Although my
example has only one, there may be (usually is) more of these.

MESH_NUMVERTEX This is followed by an integer indicating how many vertices
this GEOMOBJECT has. Essentially this is an array of vertices which the
MESH_FACE_LIST will index into later.

MESH_NUMFACES This is followed by the integer number of faces in the object.
In my example, a simple plane square, there is two faces. The number of faces

equals the number of triangles the object is composed of. It is a good
measure of the objects 'size'.

MESH_VERTEX is followed by the integer index number of the vertex, then by
that vertex's x, y and z co-ords. Note that ASE files do not have a left hand
co-ordinates sytem, but use the conventional 'real world' notation of z being
'up', x increasing rightwards, and y increasing away from you. DXA files use
DirectX's left hand system, and convert ASE accordingly.

MESH_FACE I only understanding fully the first half of this row, but thats
all thats needed for most 3d applications: a row is broken down as follows:

face number: A: X1 B:X2 C:X3

where X1, X2, X3 represent indices into the above vertex arrray. Thus face 0
in my example above has as its first point vertex number 0 which is x = -
19.6285 y = -52.9010 z = -16.4621, its second point is vertex number 1, and
its third is vertex 3.

Visible Edges I was contacted by Marc Reilly recently, who suggested that the values AB, BC and CA may be
booleans, and that they indicate whether an egde is visible or not. I think he is probably right, as they are related to
the edges, and they seem to be only range from 0 to 1. If anyone knows more, or better, please feel free to contact
me. Thanks Marc!

MESH_NUMTVERTEX As might be guessed, this is the number of texture co-
ordinates in this file. This does not have to equal the number of vertex co-
ordinates.

MESH_TVERT A texture vertex appears to be the same as a regular vertex, but
in fact most applications will only need the first two values, which are the
U and V values for that point.

MESH_NUMTVFACES is followed by the integer number of texture faces. This
should ALWAYS equal the MESH_NUMFACES value, as objects cannot be partially
textured.

MESH_TFACE A MESH_TFACE is exactly the same in format as a MESH_FACE except
it indexes into the MESH_TVERTLIST array.

MESH_NORMALS Following this is the breakdown of the objects normal data. For
some reason the ASE here changes its format and instead of having a array of
normals which are indexed into it actually just produces a verbatim list of
the details.

MESH_FACENORMAL This is the x,y,z vector at right angles to the face it is
associated with. Note that this can be calculated from the vertex data
anyway, plus the fact that DirectX uses vertex normals to calculate lighting,
and we can ignore this data.

MESH_VERTEXNORMAL The vertex normals are specified in the same order that the
faces appear in the face list. The integer number refers to the vertex to
which it is a normal. Note that it does not neccessarily have to be a true
orthonormal vector to its vertex. Objects are made to appear smoooth by
altering their vertex normals so that when lit the joining faces all meet at
same colours, so masking the ridges. There is usually an option to 'smooth'
an object in your ASE file generator.

MATERIAL_REF This refers back to the *MATERIAL marker, and it is the number
of the material this GEOMOBJECT uses.

Contents
Previous

http://www.solosnake.com/index.htm
javascript:history.back(1)

	solosnake.com
	Solosnake.com - ASE file 3ds max Ascii Scene Exporter description

